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Abstract

Visual object counting is a computer vision task relevant to a broad spectrum of
problems, and specifically to the phenotyping domain. We propose two novel deep learn-
ing approaches for the visual object counting task, demonstrating their efficiency on the
CVPPP 2017 Leaf Counting Challenge dataset. The first method performs counting via
direct regression, predicting the count value using multiple scale representations of the
image and using a novel fusion technique to combine the multi-scale predictions. In
the second method, we count after predicting and aggregating all the leaf center points.
Experimental results show that both our algorithms outperform last year’s CVPPP chal-
lenge winners, while our second pipe also provides additional information of the leaf
center points with a 95% average precision.

1 Introduction
Counting objects is relevant to a broad spectrum of computer vision problems, and specifi-
cally is prevalent in the phenotyping domain. One example of this kind of problem is count-
ing humans or cars in very crowded scenes[19, 28]. The ability to estimate the number of
humans in a crowded scene or vehicles in a traffic congestion can be used to improve secu-
rity in stadiums, or monitor and improve traffic congestion problems [22]. Another type of
counting related tasks involves counting the exact number of objects in an image with a high
precision estimation, a common requirement in a variety of agricultural problems. Know-
ing the exact number of fruits, flowers, and trees helps farmers making better decisions on
cultivation practices, plant disease prevention, and the size of harvest labor force [24].

In this work, we focus on the task of leaf counting, using a dataset of tobacco and Ara-
bidopsis plants images [3, 21], but the techniques we developed could also be used in other
counting applications. There are several possible approaches to this task. Convolutional
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Neural Networks (CNNs) have dramatically improved the state-of-the-art in visual object
recognition and detection in recent years [15, 26]. Thus, a simple idea is to perform count-
ing by detection, given a dataset where each object is annotated by a bounding box. One can
choose among several successful detection algorithms [18, 25, 26] to detect the leaves in the
image and then apply an additional regression layer to produce the final counting estimation.
With this approach we gain additional information to counting - the leaves’ exact image lo-
cations. This information may be valuable for applications that require further processing
of the leaves, like detecting diseases or examining the leaf’s morphological structure. How-
ever, using a detector for the counting task requires obtaining a very high detection accuracy,
and imperfect detection may lead to low accuracy for the counting task. It also requires
annotating each leaf in each image with a bounding box.

Approaches requiring less annotation effort are to use dot annotations, marking the object
center, or just image-level counts. Dot annotations are simpler to obtain than bounding
boxes, but often require additional cues in order to be used in complex tasks [2]. If only
image level counts are available, the counting task can be addressed by a direct regression
approach, where the regressor is optimized solely to output count estimations [5, 20]. The
natural choice for the regressor is an adapted deep CNN. The advantages of such approach
are the simplicity of the algorithm, hence the ability to train it from smaller sample size,
and the alleviation of the annotation burden. In this paper, we develop and compare two
approaches for leaf counting: a direct regression pipe and a detection based method.

To the best of our knowledge, the best results reported of the leaf counting CVPPP chal-
lenge datasets [3, 21, 27]) are obtained with a direct regression approach [5, 31]. Adopting
a similar pipe, we suggest two improvements to this method. The first is regressing the num-
ber of leaves from multiple image scales, thus accounting for cases of small and large leaves,
using a Feature Pyramid Network (FPN) [32]. The second is fusion of the multiple estimates
from the multiple image scales based on an estimated confidence variance. The regressor’s
variance is estimated from the deep network as an additional output to the main regressed
value (the number of leaves). We examine several techniques for fusing the multiple es-
timators, including min-variance selection and a Maximum Likelihood Estimation (MLE)
solution. The usage of multiple scales and the novel fusion techniques provide accuracy
improvements over the current state of the art.

The second pipe proposed in this work involves counting by detection/density estimation.
While detection usually relies on bounding box annotation, here we adjust such an algorithm
to the simpler “leaf center" point annotations. To cope with the minimal annotation, Our
detection pipe is based on regression of a “heat map" — a map with Gaussians of pre-
defined parameters placed upon the annotated leaf centers, similar to other density estimation
methods [16]. The density map estimated then goes through a spatial softmax layer for
non-maxima suppression, followed by a global sum layer to get the count estimate. This
detection based estimate is fused with direct regression, in a network driven by two losses:
detection based and regression based. We show that this pipe also outperforms the current
methods, and additionally provides the ability to detect individual leaves’ locations, using
the information given by the detector.

The rest of the paper is organized as follows: we review related work Section 2, present
our algorithm at length in Section 3, present results in Section 4 and discuss conclusions
and further work in Section 5.
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2 Related work

Our contribution relates concretely to detection-based and direct regression counting, but we
rely on recent advances in multiple-scale image processing and uncertainty measurement in
deep models for our main contributions.

Counting via detection/density estimation: In 2010, Lempitsky and Zisserman [16] in-
troduced an object counting method based on object density map regression. Their approach
appeared to perform well, even in high density and high occlusion cases. Following this
work, several authors [7, 23] used random forest regression for object density estimation.
Zhang et al. [34] were among the first to apply CNN-based methods to the crowd count-
ing task. They proposed to learn a CNN, based on AlexNet architucture [14], by alternating
training on two objective functions: direct count and density estimation. Cohen et al. [4] sug-
gested predicting in each location a local count of items in the area surrounding it. This leads
to an over-counting, which is later accounted for. Lu et al. [20] applied a similar method to
outdoors counting of maize tassels. Finally, the most similar work to ours is the recent [1],
where a counting network is trained using both a direct regression loss and a density estima-
tion loss. Unlike our work, they use the regression loss only as a regularizer for the direct
regression pipe, but it is not used for getting a count estimate.

Counting via direct regression: The majority of published works in the leaf counting
domain adopted a direct count approach [5, 8, 31]. The winners of the 2015 CVPPP chal-
lenge [8] proposed a learning approach for counting leaves in rosette plants. They used a
supervised regression model to relate image-based descriptors, which are learned in an unsu-
pervised manner, to leaf counts. Rahnemoonfar and Sheppard [24] introduced CNN to their
tomato counting model. They re-trained the Inception-ResNet CNN architucture [30] as a re-
gression model, with the ability to skip connections between layers. In addition, they trained
their network solely on generated synthetic data, and tested on real images, suggesting a so-
lution to data hungry models. Teimuri et al. [31] referred to leaf counting as a classification
task, predicting leaf numbers as labels, using the Inception-v3 architecture [29]. Dobrescu
et al. [5] suggested a regression model based on ResNet-50 architecture [9], training on mul-
tiple leaf datasets to produce a more generalized model, with excellent results. None of
those methods used multiple-scale image representation or uncertainty measurement in their
models, as we did in our direct regression pipe.

Multiple scale approaches: The importance of processing the image in multiple scales
for detection was well acknowledged for non-deep methods [6]. Successful introduction of a
multi-resolution feature pyramid into deep detection models was recently done in the Feature
Pyramid Network (FPN) [17], where top down and lateral connections are added to create a
pyramid of equivalent feature maps at multiple resolutions. We rely on this contribution in
our suggested method.

Uncertainty and ensemble fusion: Fusion of the results received from multiple deep
models is often done to improve accuracy, where the simple fusion of averaging the results
is often employed [5, 14]. Better fusion requires an estimation of the uncertainty for the
multiple predictors. In [11] it was suggested to measure network regression uncertainty by
minimizing a log-normal density loss with an input-dependent variance estimate. We make
use of this technique here for obtaining variance estimates, which are then used for informed
fusion.
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Figure 1: The direct regression architecture. The left side is the backbone network with the FPN. On
the right is the regression sub-models attached to Pi level of the FPN.

3 Method

3.1 Direct regression for counting
In this section, we propose a deep CNN based architecture to infer the number of leaves
in a given image, using direct regression. For this mission we adopt the FPN architecture
in [17] as a backbone, and following the work of [18], create a sub-model on top of each
pyramid scale. The fusion of the results given by the multiple predictors is done using a
novel approach, based on thier uncertainty estimates.

3.1.1 FPN backbone

Our architecture includes representation of the image in several resolutions (octaves) and
inference of the number of leaves in the given image for each of the representations. This
method is based on the FPN [17] architecture, which improves multi-scale detection for
several algorithms [10, 18], showing significant gains over using one resolution only. This
architecture can be modified, as we present in this work, to a direct regression model.

The FPN method takes a single-scale image of an arbitrary size as input, and outputs
a feature pyramid of proportionally sized maps at multiple levels, in a fully convolutional
fashion. This process is independent of the backbone convolutional architectures, and in
this work, similarly to [17], we used ResNet-50 [9] as the backbone. The construction of
the pyramid involves bottom-up connections, top-down pathways, and lateral connections,
that generate equivalent feature maps at multiple scales (see figure 1, left). We construct
a pyramid with levels P3 through P7, where i indicates pyramid level (Pi has resolution 2i

lower than the input). As in [17], all pyramid levels have C = 256 channels, with details of
the pyramid generally follow [17] with a few modest differences, based on [18]. Each level
of the pyramid is better suited for counting objects at a certain scale range.

3.1.2 Count regression sub model

On top of each pyramid level a regression sub-model is introduced including two 3× 3
convolutional layers with 256 output maps, followed by Global Average Pooling (GAP),
flattening the maps to a compact 256× 1 representation. Similarly to [5], this vector is fed
into two fully connected layers in decreasing sizes, 128 and 64 respectively, except in our
architecture this lead to an output layer including two neurons. These two output neurons are
estimates of the mean and variance of the expected number of leaves (see 3.1.3 for details).
The architecture is summarized in figure 1. As in the RetinaNet [18] architecture, all the
regressor sub-models share their weights, so effectively the same regressor is applied to each
pyramid level.
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We hence use 5 different image pyramid levels for gaining 5 different leaf count esti-
mators. Fusing these into a single estimator is better done when uncertainty estimates are
available. We describe how such estimates are obtained in 3.1.3 and how they are fused
in 3.1.4.

3.1.3 Modeling the Uncertainty of Each Sub-Model

Following [12], our regression network has two outputs, ŷ and σ̂2, corresponding to the ex-
pected leaf count and its variance. The training data is a labeled sample of images {Ii,yi}N

i=1
with yi the leaf count label. We train the network to minimize the following loss:

Lr =
N

∑
i=1

1
2σ̂i

2 ||ŷi− yi||2 +
1
2

log σ̂i
2 (1)

where ŷi = ŷ(Ii), σ̂i = σ̂(Ii) are the outputs of the regressor over image i, in a specific
scale. Note that this loss is the log of a Gaussian density (up to a constant), but with the mean
and variance being input-dependent estimates. This means that in image space regions where
the regression is not accurate (i.e. where large deviations occur between ŷ and the truth y), a
larger σ̂2 is inferred to reduce the loss. The opposite happens in areas of accurate prediction.
In practice, followed by [12], we train the network to predict the more numerically stable s =
log σ̂2, so we minimize ∑

N
i=1

1
2 exp(−si) · ||ŷi− yi||2 + 1

2 si to obtain the variance estimates.

3.1.4 Fusion of the Sub-Models’ Predictions

Given a variance estimate for each count prediction, new fusion options are possible. Keep-
ing an input image index i fixed (and hence omitted), denote the multiple estimators for
this image by (ŷ j, σ̂ j)

J
j=1. One intuitive way would be to choose the model with the lowest

degree of uncertainty, i.e. the one with the lowest predicted variance for the specific input
image:

ŷ = ŷk, with k = argmin(σ̂ j) (2)

While this choice is intuitive, we know that the MLE for the consolidation of Gaussian
distributions is different. Specifically, the MLE has the closed form solution:

ŷ =
∑

J
j=1

1
(σ̂ j)2 ŷ j

∑
J
j=1

1
(̂σ j)2

(3)

It should be noted that the second method assumes observation independence between
sub-models’ results. This assumption is not fulfilled (given that each sub-model receives in-
put as a representation of the same image at a different resolution), and in practice the fusion
method given by equation 2 performed better and was used as default in our experiments.

3.2 Counting by detection of key-points
Our second approach of solving the given task is to first detect the leaves and only then, count
them. The CVPPP dataset includes leaf centers, but no bounding box annotations (see 4.1
for further details). Hence, we are teaching a network to find leaf centers. To achieve this
task, we first create a heat map, with a two-dimensional Gaussian of fixed width k placed
around each leaf center. k was carefully chosen so that Gaussians of nearby leaf centers
will not overlap. A network was trained to predict this heat map, and then use this map to
regress the number of leaves. Like in section 3.1, we start from the FPN with a backbone of
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ResNet−50. We take the middle pyramid level P3 as our input representation, and create a
detection sub-network over it to regress the heat map. A count regression sub-network then
accept the heat map as input and produce its final count prediction.

3.2.1 Detection sub-network

The detection sub-model is a small Fully Convolutional Network (FCN), containing four
3×3 ReLU convolutional layers with 256 filters each.

The predicted heat map is actually an additional 3×3 ReLU convolutional layer, includ-
ing a single filter. Although the final heat map is predicted following all four convolutional
layers, each of those layers predict the heat map independently, and is guided using the same
loss as the final loss. The architecture is summarized in figure 2.

Variables p̂ and p are the prediction and target heat map values for a single pixel in a
single image, respectively (dropping the image and the pixel indices for convenience). The
loss minimized in training is a weighted smooth-L1 loss Ld , with w = 0.1:

Ld =

{
(1−w) ·Ploss , where p > 0
w ·Ploss ,otherwise

,Ploss =

{
|p̂− p|− 1

2 , where |p̂− p| ≥ 1
1
2 (p̂− p)2 ,otherwise

(4)

The weighting keeps the total weight of positive pixels in the heat map high, and directs
the optimization towards accurate regression of these values, rather than the pixels with the
value zero, which outnumber them considerably. The total loss minimized is the sum of Ld
over all pixels and images.

3.2.2 Counting sub-network

Given an estimated heat map, we can find the number of Gaussian centers. Ideally, this num-
ber will be the estimated leaf count. However, assuming imperfect detection, it is preferable
not to use it directly as an estimator, but as a collaborator to the regression. To properly count
the leaves, we would like each Gaussian to be shrinked to a delta function before summing.
Hence we apply the following non-maxima suppression procedure to the estimated heat map
P ∈ RN×M:

Q = MaxPool(P,(k,k)), P′ = P · exp(−β · |P−Q|) (5)

Using spatial softmax function, a pixel in the output map P′ keeps a value close to its
original value in P only if it was the highest value of P in a k× k neighborhood. We chose
k to be the same value used in the heat map creation, so a single pixel is expected to remain
active for a leaf-sized Gaussian.

Spatial softmax keeps mostly the pixels which are local maxima, but it does not remove
noise, so P′ still contains small values in non-center pixels. We hence apply a smooth step
function (sigmoid) layer of the form y(x) = 1

1+e−β (x−t) to keep only values greater than some

threshold t, to get the detection map D̂, containing the estimated leaf centers as its active
pixels. A global sum pooling layer applied to D̂ then gives us a single number CD̂ - the
detection-based estimate for the leaf count.

Beyond the detection-based estimate CD̂, Additional features may be used for the final
count regression. We apply a GAP operation to the fourth convolutional layer, obtaining
a 256-dimensional feature vector V4. The final count estimator Ĉ is obtained by applying
linear regression in the final layer, .i.e. Ĉ =W · [V4,CD̂] where [V4,CD̂] is a concatenated 257
features vector. We train the final counter to minimize an L1 loss function.
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Figure 2: The detector architecture. The left side is the backbone network with the FPN. On the right
is the detection sub-model which includes four 3× 3 ReLU convolutional layers and at the top - the
regression head.

4 Experiments and results

4.1 Experimental setup
Evaluation metrics: For the regression evaluation, we used the metrics provided by the
workshop organizers (see [5]) - the average distance and the L1 distance between estimated
and true count, and the fraction of full agreement between the two. For estimation of the de-
tection performance we use a recall-precision curve and the Average Precision (AP) metric-
the area under the curve. In order to determine if a leaf detection (an active point in D̂) is
a hit or a miss we use the criterion introduced in Percentage of Correct Keypoints (PCK)
computation [33]. With PCK, a leaf detection point is considered a hit if the distance be-
tween it and a ground truth leaf center is lower than α ·max(w,h) where (w,h) are the width
and height of the bounding box surrounding the entire object (plant). Like in [33] we used
α = 0.1 to test our detection performance.

Data sets: The LCC data includes 4 datasets - A1, A2, A3, and A4. A1, A2, and A4
contains images of the Arbidopsis plant and A3 dataset contains images of young Taboco
plants. Datasets A1, A2, and A3 are relatively small containing 128, 31, and 27 images
respectively, while A4 is bigger with 624 images. Since the datasets are relatively small, we
applied random transformations including rotation, vertical and horizontal flips and scaling.
The images’ size varies between 500×530 and 2448×2048, so we resized them to 800×W
where W is chosen to keep the original image aspect ratio.

Training procedure: For the training results we train and test on each dataset separately
with four fold cross validation following [5], and report average results over the folds. For
the test results we trained a single model over the accumulated dataset, with 80% of the Ac
data used for model fitting and 20% as a validation set for the early stopping criterion. We
did not use the foreground plant mask in either of our model, and used the leaf centroid
information in the detection pipe only. We used ADAM [13] as optimizer, with a learning
rate of 1e−5.

4.2 Results
We consider first the train and test counting results of the two approaches we suggest, and
compare these results to the state of the art. Next, we present experiments showing a
breakdown of the elements contributing to each approach, and the detection results of the
detection-based pipe.

Citation
Citation
{Dobrescu, Giuffrida, and Tsaftaris} 2017

Citation
Citation
{Yang and Ramanan} 2013

Citation
Citation
{Yang and Ramanan} 2013

Citation
Citation
{Dobrescu, Giuffrida, and Tsaftaris} 2017

Citation
Citation
{Kingma and Ba} 2014



8 : BMVC AUTHOR GUIDELINES

Dataset DiC |DiC| Agreement [%]
MSR D+R [5] MSR D+R [5] MSR D+R [5]

A1 0.02 0.08 -0.81 0.59 0.64 0.94 49 47 25
A2 1.28 0.52 -2.38 2.05 1.24 2.38 20 24 38
A3 -0.16 -0.42 -0.57 1.05 1.45 1.43 14 11 14
A4 0.03 0.12 0.1 0.67 0.68 0.91 47 47 35

Table 1: Cross validation results on seperate datasets. The presented algorithms are Multiple Space
Regression (MSR, see section 3.2), Detection+ Regression (D+R, section 3.1), and the direct regression
results of [5] for comparison

DiC |DiC| Agreement [%] MSE
MSR D+R Ref [5] MSR D+R Ref [5] MSR D+R Ref [5] MSR D+R Ref [5]

A1 -0.27(1.21) 0.12(1.11) -0.39(1.17) 0.70(1.02) 0.73(0.84) 0.88(0.86) 57.6 45.5 33.3 1.48 1.21 1.48
A2 -0.22(0.67) 0.44(0.73) -0.78(1.64) 0.44(0.53) 0.44(0.73) 1.44(1.01) 55.6 66.7 11.1 0.44 0.67 3.00
A3 -0.04(1.61) -0.27(1.14) 0.13(1.55) 1.14(1.12) 0.84(0.80) 1.09(1.10) 32.1 33.9 30.4 2.54 1.34 2.38
A4 0.15(1.08) 0.45(0.97) 0.29(1.10) 0.76(0.78) 0.75(0.76) 0.84(0.76) 42.9 39.9 34.5 1.19 1.14 1.28
A5 0.10(1.22) 0.26(1.05) 0.25(1.21) 0.84(0.90) 0.76(0.77) 0.90(0.85) 41.7 39.6 33.2 1.50 1.17 1.53
All 0.07(1.22) 0.26(1.05) 0.19(1.24) 0.83(0.90) 0.76(0.77) 0.91(0.86) 42.3 39.9 32.9 1.49 1.17 1.56

Table 2: Results of the Multiple Scale Regressor (MSR) and the Detection+Regression approach
(D+R) on the held-out test set, with comparison to the winner of the 2017 CVPPP challenge [5].

Results and comparison to previous work: The cross validation results on the four
datasets are reported in Table 1. The results are more stable for datasets A1 and A4, which
are larger. In Table 2 we present our results on the test data of the CVPPP challenge. Our
two new models outperform last year’s winner of the LCC challenge in almost all metrics.
Specifically, in the final ’all’ test set, our approaches achieve 42% (multiple scale regression)
and 40% (detection+regression) count agreement, while [5] (last year’s winner) achieved
33%. A more recent result on this dataset was presented by [31], which only reported the
results on the combined dataset: DiC - 0.52, AbsDiC - 1.31 and count agreement - 41%.
Compared to this work, we obtained better scores in the DiC and AbsDiC metrics in both
our models, and a higher count agreement using the direct regression model.

Multiple Scale Regression pipe: Table 3 presents the results of our preliminary exper-
iments on several models providing intermediate check points between a baseline similar

Input Loss Description DiC |DiC| Agreement [%] MSE
1 C5 L2 loss Baseline -0.92 1.08 38 2.93
2 P3 L2 loss pyramid 1 level 0.27 0.74 39 1.08
3 P3−P7 L2 loss Avg fuse 0.34 0.76 42 1.31
4 P3−P7 Unc loss Avg fuse 0.10 0.69 44 1.04
5 P3−P7 Unc loss min σ̂ fuse -0.01 0.62 49 0.91
6 P3−P7 Unc loss MLE fuse -0.05 0.60 49 0.87

Table 3: Incremental improvements over a baseline in the direct regression model, trained and val-
idated on a single fold of A4 dataset, in out preliminary experiments. The table rows present the
following: 1. A baseline similar to [5]. 2. Replacing the input with the middle pyramid level. 3. Using
5 pyramid levels, averaging the results. 4. Like 3, with log-Gaussian loss (Eq. 1). 5. Like 4, with
min-sigma fusion of the predictors (Eq. 2). 6. Like 3, with MLE fusion (Eq. 3).
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Condition DiC |DiC| Agreement [%] MSE
1. Best model 0.08 0.64 47 0.89
2. No data Aug. 0.21 0.66 46 0.93
3. No multiple losses 1.06 1.41 34 3.84
4. Detection only 0.83 1.25 27 2.88

Figure 3: Left: Ablation table for the cross validation results of the detection model on the A1 dataset.
1. The full model. 2. Training without data augmentation. 3. Using a single detection loss instead
of four, one after each convolutional layer. 4. Using the detection-based estimator CD̂ as the single
feature for count regression. Right: The recall-precision curve, generated based on the validation set
of the detection model, when trained on 80% of the Ac dataset and validated on 20% of it.

to [5], and our multiple scale regressor. The top row present the results of a model sim-
ilar to [5] which was our baseline. This model includes a ResNet − 50 backbone, global
average pooling on top of C5 convolution layer, followed by two fully connected layers in
decreasing sizes and a final single neuron predictor. It obtaines count agreement of 38% and
a |DiC| score of 1.08, compared to 35% and 0.91 in [5] respectively. As can be seen, several
steps improve the performance over this baseline: moving to pyramid features, log Gaussian
loss and variance-based fusion methods. In additional experiments we found the Maximum-
likelihood estimator (Eq. 3) slightly inferior to simple choice of the estimator with the lowest
variance (Eq. 2), and hence the latter was used in the rest of our experiments.

Detection+Regression pipe: Figure 3 left, shows the metric scores for several ablated
model versions. The results indicate that adding multiple losses to each of the FCN sub-
model convolutional layers, and applying additional 256 features to the regressor beyond CD̂,
improves the detector’s performance. However, the data augmentation techniques we used
did not significantly contribute the model. Figure 3 right, presents the detection performance
based on the AP metric, as presented in 4.1, showing the trade-off between precision and
recall. The resulted AP value is 0.95, presenting both high recall and high precision values,
indicating high detection accuracy (high precision) and a low false negative rate (high recall).
Some examples of the detectors’ performance are shown in figure 4. It can be seen from these
examples, that the Gaussian heat map successfully predicts the vast majority of the leaves,
and that the misses of the detector occur in cases of close leaves, high leaf occlusion and
very small leaves.

5 Conclusions and future work

We presented two methods for leaf counting, suited for different levels of annotations. The
first method solves leaf counting as a direct regression task. We showed that using multi
scale representations of the image and predicting the leaf number using each of them im-
proves the counting accuracy. Additionally, we suggested a novel fusion approach for the
multi scale predictions. In the second approach we suggested a counting approach by leaf de-
tection, using leaf center annotations as ground truth. Empirically, the methods show similar
performance, and both provide improvements over existing art.

There are several directions which we think are likely to improve the presented results.
In the direct regression method, we believe that using L1 loss function rather than L2 can im-
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a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

Figure 4: Leaf centers detection examples for two images. Example ’a’ presents a successful detection
while example ’b’ presents some miss detections. The misses are pointed with red arrows. Images a1,
b1 present the images with their ground truth point annotations. Images a2, b2 present the generated
ground truth Gaussian heat map. Images a3, b3 present the model predictions of the Gaussian heat
map, and images a4, b4 present the Gaussian predictions after the spatial softmax operation.

prove the results. More specifically, we plan to change the Gaussian distribution loss (Eq. 1)
to a Laplacian, as done in [12], and modify the fusion method accordingly. In the detection-
based pipe, incorporating the multi-scale approach is a good direction. Finally, combining
the two approaches into a single unified network is likely to provide better accuracy, though
maybe at the cost of larger sample size and annotation requirements.
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[6] P DollÃąr, R Appel, S Belongie, and P Perona. Fast feature pyramids for object detec-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (8):1532–
1545, 2014.

[7] Luca Fiaschi, Ullrich Köthe, Rahul Nair, and Fred A. Hamprecht. Learning to count
with regression forest and structured labels. Proceedings of the 21st International Con-
ference on Pattern Recognition (ICPR2012), pages 2685–2688, 2012.

[8] Mario Valerio Giuffrida, Massimo Minervini, and Sotirios A. Tsaftaris. Learning to
count leaves in rosette plants. In BMVA press, 2016.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Com-
puter Vision (ICCV), 2017 IEEE International Conference on, pages 2980–2988. IEEE,
2017.

[11] A Kendall and Y Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in Neural Information Processing Systems (NIPS),
2017.

[12] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? In Advances in neural information processing systems, pages
5574–5584, 2017.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):
436, 2015.

[16] Victor S. Lempitsky and Andrew Zisserman. Learning to count objects in images. In
NIPS, 2010.

https://doi.org/10.5281/zenodo.168158


12 : BMVC AUTHOR GUIDELINES

[17] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. Feature pyramid networks for object detection. In CVPR, volume 1, page 4,
2017.

[18] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2999–3007, 2017.

[19] Shunqiang Liu, Sulan Zhai, Chenglong Li, and Jin Tang. An effective approach to
crowd counting with cnn-based statistical features. In Smart Cities Conference (ISC2),
2017 International, pages 1–5. IEEE, 2017.

[20] Hao Lu, Zhiguo Cao, Yang Xiao, Bohan Zhuang, and Chunhua Shen. Tasselnet: count-
ing maize tassels in the wild via local counts regression network. Plant methods, 13
(1):79, 2017.

[21] Massimo Minervini, Andreas Fischbach, Hanno Scharr, and Sotirios A Tsaftaris.
Finely-grained datasets for image-based plant phenotyping. Pattern recognition let-
ters, 81:80–89, 2016.

[22] Daniel Onoro-Rubio and Roberto J López-Sastre. Towards perspective-free object
counting with deep learning. In European Conference on Computer Vision, pages 615–
629. Springer, 2016.

[23] Viet-Quoc Pham, Tatsuo Kozakaya, Osamu Yamaguchi, and Ryuzo Okada. Count
forest: Co-voting uncertain number of targets using random forest for crowd density
estimation. 2015 IEEE International Conference on Computer Vision (ICCV), pages
3253–3261, 2015.

[24] Maryam Rahnemoonfar and Clay Sheppard. Deep count: fruit counting based on deep
simulated learning. Sensors, 17(4):905, 2017.

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99, 2015.

[27] H Schaar, M Minervini, A Fischbach, and S.A.Tsaftaris. Annotated image datasets of
rosette plants. In European Confernce On Computer Vision, 2014.

[28] Santi Seguí, Oriol Pujol, and Jordi Vitria. Learning to count with deep object features.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 90–96, 2015.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.



: BMVC AUTHOR GUIDELINES 13

[30] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning. In
AAAI, 2017.

[31] Nima Teimouri, Mads Dyrmann, Per Rydahl Nielsen, Solvejg Kopp Mathiassen,
Gayle J Somerville, and Rasmus Nyholm Jørgensen. Weed growth stage estimator
using deep convolutional neural networks. Sensors, 18(5):1580, 2018.

[32] Yuanpu Xie, Fuyong Xing, Xiangfei Kong, Hai Su, and Lin Yang. Beyond classifica-
tion: structured regression for robust cell detection using convolutional neural network.
In International Conference on Medical Image Computing and Computer-Assisted In-
tervention, pages 358–365. Springer, 2015.

[33] Yi Yang and Deva Ramanan. Articulated human detection with flexible mixtures of
parts. IEEE transactions on pattern analysis and machine intelligence, 35(12):2878–
2890, 2013.

[34] Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. Cross-scene crowd
counting via deep convolutional neural networks. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 833–841, 2015.


